MONOTONICTTY CONJECTURE ON PERMANENTS OF DOUBLY STOCHASTIC MATRICES i

نویسنده

  • EDWARD T. H. WANG
چکیده

A stronger version of the van der Waerden permanent conjecture asserts that if J„ denotes the n X n matrix all of whose entries are \/n and A is any fixed matrix on the boundary of the set ofnxn doubly stochastic matrices, then per(A/4 + (1 — \)Jn) as a function of X is nondecreasing in the interval [0, 1]. In this paper, we elucidate the relation of this assertion to some other conjectures known to be stronger than van der Waerden's. We also show that this assertion is true when n = 3 and in the case when, up to permutations of rows and columns, either (i) A = J, ffi /,, 0 < s, t, j + (=nor (ii) A — [yr £] where OisanjXs zero matrix, Y is s X t with all entries equal to 1/r, and Z is t x t with all entries equal to (t s)/t2, 0<s<t,s + t = n.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum permanents on two faces of the polytope of doubly stochastic matrices∗

We consider the minimum permanents and minimising matrices on the faces of the polytope of doubly stochastic matrices whose nonzero entries coincide with those of, respectively, Um,n = [ In Jn,m Jm,n 0m ] and Vm,n = [ In Jn,m Jm,n Jm,m ] . We conjecture that Vm,n is cohesive but not barycentric for 1 < n < m + √ m and that it is not cohesive for n > m + √ m. We prove that it is cohesive for 1 <...

متن کامل

Van der Waerden/Schrijver-Valiant like Conjectures and Stable (aka Hyperbolic) Homogeneous Polynomials: One Theorem for all

Let p be a homogeneous polynomial of degree n in n variables, p(z1, . . . , zn) = p(Z), Z ∈ C. We call such a polynomial p H-Stable if p(z1, . . . , zn) 6= 0 provided the real parts Re(zi) > 0, 1 ≤ i ≤ n. This notion from Control Theory is closely related to the notion of Hyperbolicity used intensively in the PDE theory. The main theorem in this paper states that if p(x1, . . . , xn) is a homog...

متن کامل

Some results on the symmetric doubly stochastic inverse eigenvalue problem

‎The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$‎, ‎to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$‎. ‎If there exists an $ntimes n$ symmetric doubly stochastic ...

متن کامل

On The Second Order Linear Recurrences By Generalized Doubly Stochastic Matrices

In this paper, we consider the relationships between the second order linear recurrences, and the generalized doubly stochastic permanents and determinants. 1. Introduction The Fibonacci sequence, fFng ; is de…ned by the recurrence relation, for n 1 Fn+1 = Fn + Fn 1 (1.1) where F0 = 0; F1 = 1: The Lucas Sequence, fLng ; is de…ned by the recurrence relation, for n 1 Ln+1 = Ln + Ln 1 (1.2) where ...

متن کامل

2 2 N ov 2 00 7 Van der Waerden / Schrijver - Valiant like Conjectures and Stable ( aka Hyperbolic ) Homogeneous Polynomials : One Theorem for all

Let p(x1, ..., xn) = p(X), X ∈ R be a homogeneous polynomial of degree n in n real variables. Such polynomial p is called H-Stable if p(z1, ..., zn) 6= 0 provided the real parts Re(zi) > 0, 1 ≤ i ≤ n. This notion from Control Theory is closely related to the notion of Hyperbolicity intensively used in the PDE theory. The main theorem in this paper states that if p(x1, ..., xn) is a homogeneous ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010